日本レドックス株式会社

実験が動物用MRIシステム NRIシステム NRIシステム REPART OF THE PROPERTY OF TH

本力タロクに掲載されている製品はすべて研究用です。 ヒトや動物の医療用・臨床診断用には使用しないでください。

MR ViveLVA®

MR VivoLVA®は、永久磁石を用いた コンパクトな実験小動物用 MRI システムです

世界最高レベルの磁場強度 (1.5 テスラ)

低ランニングコスト

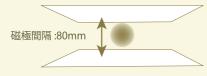
実験用小動物の観測に必要な磁場強度を実現した

国産のMRI システム

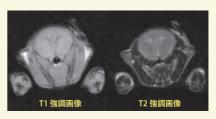
MRI (Magnetic Resonance Imaging: 核磁気共鳴画像法) とは

生体内の水素原子 (¹H) の共鳴現象を利用

水分や脂肪の豊富な、臓器や脳、軟部組織等 を観察するのに最適です


MRI でできること

撮像方法を変えることによって さまざまなコントラストの画像が得られます


■ T1 強調画像

■ T2 強調画像

水分は黒く腫瘍はやや黒く見えます 解剖学的な構造を観るのに適しています 水分が白く脂肪が黒く見えます 病変を見るのに適しています

撮像範囲:約 40mm 球内部

実験小動物用 MRI の研究例

薬効評価研究

脳虚血・腫瘍・臓器・ 脂肪量変化等

再生医療研究

幹細胞移植時および移 植後の再生過程の観察 (Cell Tracking)

病態モデル動物 作成評価

動物実験データの信頼性の向上

マルチモーダル研究

様々な装置のデータと の比較、融合(生体内 の位置情報の取得)

特徵

設置後のランニング コストはほぼ不要 コンパクトかつ強力 な磁場強度 (1.5T) を 実現 省スペース設計で さまざまな場所で 設置可能 *1 Medalist™²で簡単 に MRI 画像を取得

*1 モデルにより床耐荷重が異なりますので、設置に際しては必ずご相談ください。
*2 簡便なデータ収集ソフトウェア

便利に!簡単に!ほしい画像を!

以下の新機能を搭載しました

新機能

3断面スカウト画像からオブリーク及びポジションの設定で見たい断面を即座に指定!

撮像予約機能で、事前に 任意のシークエンスを組み合わせて自動連続撮像が可能!

可変 FOV! 10-200mm で 自由に変更可能!

これら以外にも便利な 機能が増えています

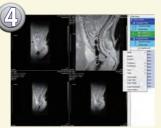
(ご注意!:撮像可能領域は送受信コイル感度領域または静磁場均一領域に依存します)

MRIデータ収集画像 再構成ソフトウェア **Medalist**TM

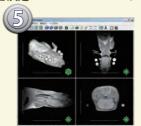
シークエンスを呼び出 して実行するだけで撮 像条件を設定 パラメータを変更する だけで詳細に設定 オブリーク撮像(撮像範囲や断面の変更傾きの補正)はマウスで直感的に設定

Medalist による MRI 撮像手順例

3 断面の画像を撮像


撮像したい方向・角度を決定

シークエンスを選択


撮像

画像を保存

(バイナリ形式・DICOM 形式に対応)

データ解析や3D化

どなたでもすぐに MRI 画像を取得できる カンタン操作のソフトウェアです

胸(腹)部

動きの多い部位ですが、同期撮像(心拍・呼吸)と組み合わせることで明瞭な画像が得られます。

■ 正常ラット胸(腹)部撮像画像例 心拍同期により心臓壁の様子を可視化

3D 1L

■ 正常マウス胸部撮像画像例 (心拍同期撮像+血管造影試薬「Gadolisome」)

心拍同期撮像+Gadolisome使用でマウス心臓の冠動脈が確認できます

ラット腹部:水平断面 (Coronal)

恒 邨

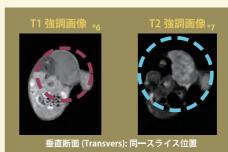
造影剤との組み合わせで臓器コントラストが上がります。腫瘍撮像はT2強調撮像で定量化可能です。

■ 正常マウス腹部撮像画像例(造影画像)

#5 所識 水平断面 (Coronal)

造影剤:プリモビスト(バイエル薬品) 0.1mL/mouse 腹腔内注射後10分後のMR画像

■肝臓


造影剤なしではコントラストの差 が出にくい

肝臓集積性の強い陽性造影剤 によりはっきりと造影

■腎臓

顕著に輝度上昇 詳細な構造が確認

■ マウス腹部腫瘍撮像画像例

■ 腫瘍の大きくなってい る部分が確認できる

■ 正常組織と主要組織の 境界部分が T1 強調画 像より明瞭に区別

						·	0.0.7 737,11 -
	*1	*2	*3	*4	*5	*6	*7
撮像部位	正常ラット腹部	ラット腹部 (心臓,肺)	正常マウス胸部	正常マウス胸部	正常マウス腹部	マウス腹部腫瘍	
シークエンス	2D-GRE	2D-GRE	3D - GRE	2D-GRE	3D-GRE	2D-SE	
測定法						T1 強調	T2 強調
TR/TE	75/6ms	50/6ms	50/6ms	100/6ms	50/6ms	500/9ms	2000/69ms
NX				4		4	4
Time	2.6min	27.3min	13.4min		6.8ms	4.2ms	17.1ms
解像度			0.234mm/voxel	0.234mm/pixel			
FOV			$128 \times 256 \times 128$		$128 \times 256 \times 32$	128 × 256	
Slice						1mm	

MR VivoLVA® 撮像画像例

頭部(脳)

脳研究では他のin vivoイメージング装置と比較して、MRIが最も得意とする部位です。

■ 正常ラット頭部撮像画像例 パラメータを変える事で全く異なったコントラストの画像が得られます

■ 正常マウス頭部撮像画像例(マンガン造影)

マンガン造影MRI法を用いて神経活動依存的な変化を可視化 (機能的画像)できます

Mn^{2+:} T1 を短縮させる Ca²⁺チャネルを通過して細胞内に取り込まれる 局所 Mn²⁺ 濃度が上昇


vガン造影MRI法 nganese-Enhanced Magnetic Resonance Imaging, MEMRI

▶ T1 コントラストが上昇

脚部(関節)

骨は画像化できません(水素原子がないため)が、骨髄の部分や軟骨部分の観察は可能です。

■ マウス大腿部画像例 撮像断面の位置と角度をソフトウェア上で微調整できるので、動物を動かすことなく、関節の断面を正確にMR画像として取得することが可能です。

	*8	*9	*10	*11	*12	*13	*14
撮像部位	ラット脳	ラット脳	ラット脳	ラット脳	マウス脳	マウス大腿部	マウス大腿部
シークエンス	2D-SE	2D-SE	2D-SE	2D-SE	2D-GRE	2D-GRE	3D-GRE
測定法	T1 強調	T2 強調	T1	T2	T1 強調 Mn 造影法		
TR/TE	500/9ms	3000/70ms	500/9ms	3000/70ms	250/6ms	250/6ms	50/6ms
NX	8	4	4	4	8	8	1
Time	8.5ms	25.6ms	4.26ms	25.6ms	4.26ms	4.2ms	13.6ms
解像度	0.234mm/pixel	0.234mm/pixel	0.234mm/pixel	0.234mm/pixel	0.098mm/pixel	0.11mm/pixel	0.23mm/voxel
FA					90		

様々な測定

定量 MRI

定量画像を高速に取得可能

造影剤研究に! 疾患解析に!

分子固有の T1. T2 値を定量画像化 することが可能

▶▶▶ ワンボタンで T1・T2 画像が作れます

生体分子の定量評価は 強力なツールです!

T1 画像

T2 画像

CarboxyProxyl ニトロキシプローブ剤

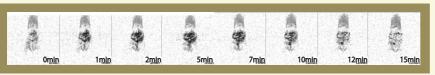
観察できる

Proton Density 画像

マルチモダリティ 他の装置と組み合わせることで多様な観測が可能

■ Keller と組合わせた撮像例

CarboxyProxyl を投与したマウスの腹部を keller と MRI で 観察しました。


造影剤が分布している場所の輝度が上がる

keller(DNP-MRI)と組み合わせることによって 間接的にラジカルを観測することができます

水溶性で主に臓器に分布する様子が

マウスの詳細な臓器の画像を取得

投与後、紹寺変化を測定 腹部(腎臓)に分布していることがわかる 徐々にラジカルが消失していく変化が観察できる

Keller

■ 蛍光イメージング装置と組合わせた幹細胞の移植状況の確認例(マルチモーダル研究)

マウス幹細胞を、蛍光ラベル試薬と MRI 細胞ラベル試薬を用いて二重ラベルし、 マウスの頭部に移植した際の細胞の位置情報を蛍光イメージング装置と MRI で観 察しました。

MRI 蛍光イメージング装置 3 次元の画像情報を 取得可能に!

蛍光イメージング装置

細胞移植された位置が蛍光を発するため 2 次元位置情報を取得

目印:ファントム

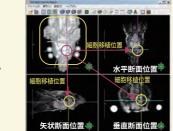
A) と B) の画像重ね合わせ

(2 次元位置情報)

磁性鉄の効果で細胞が黒く抜けることによりその位置を確認

深度方向を含む3次元の位置情報 を用いた画像処理が可能

ラベルしたmMSC


A) 蛍光イメージング装置画像

B) MRI 撮像画像 (3D 化)

マウス間葉系幹細胞 (mMSC) 移植細胞数 1 × 10⁶ 個 細胞ラベル試薬 MRI 用試薬 [MR tracker CL :DS ファーマバイオメディカル社]

A) + B)

MRI 画像での 3 次元位置情報から 2 次元情報 (3 断面) に分解して確認

ラベルしたmMSC 胞が里く抜ける

MRI による正確な3次元位置情報把握

2 つの装置(モダリティ)で得られた情報を重ね合せること により移植された細胞の位置がより正確に確認できました。

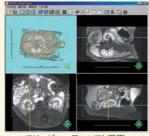
オプション製品

送受信 (RF) コイル 対象動物・部位に応じて最適な送受信コイルで撮像

注文 Cat.No.	メーカー Cat.No.	品名	備考	
NXRDB100	RDB100	マウス頭部用コイル	φ 20	1 77 3
NXRDB101	RDB101	マウス麻酔用ホルダー 2(頭部コイル用)	φ 20 対応ホルダ	9
NXRDB200	RDB200	ラット頭部用コイル	φ 38.5	1770
NXRDB201	RDB201	ラット麻酔用ホルダー 2(頭部コイル用)	φ 38.5 対応ホルダ	G J
NXRDB004	RDB004	標準 RF コイル 50mm(ラット腹部)	φ 50	1 1000
NXRDB24	RDB24	ラット麻酔用ホルダー 2(全身ホルダー)	φ 50 対応ホルダ	
NXRDB002	RDB002	ラット全身用コイルφ 50 × 80	φ 50 $ imes$ 8	170
NXRDB22	RDB22	ラット麻酔用ホルダー 2(全身ホルダー)	φ 50 × 8 対応ホルダ	

*各種ご要望にあわせた特注使用も可能です。別途ご相談下さい。 *RF コイル仕様の詳細および撮像動物のサイズに関しては別途ご相談下さい。

画像解析ソフト


Expert INTAGE

(サイバネットシステム社製:オプション)

体積 插着 胜離 輝煌

3D 画像再構成や定量データを簡単に求めることが可能 (DICOM 形式ファイル出力可)

新機能 **Drawing Extractor** 3D 抽出がさらに 簡単になりました

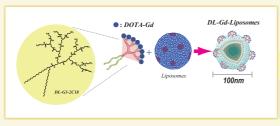
フリービューワーソフト画面

マウス腹部3D再構成例

注文 Cat.No.	メーカー Cat.No.	品名	備考	容量
SFMRTC04	MRC04	Expert INTAGE(小動物用 MRI)	3D ビューワーソフト (サイバネットシステム社製)	一式

* Microsoft WindowsOS搭載機種:詳細はお問い合わせ下さい。

実験小動物用MRI血管造影剤

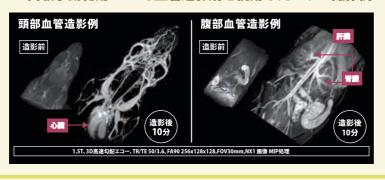

Gadolisome

Liposome Gadolinium Contrast Agent

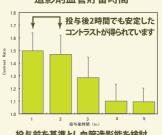
造影アンギオグラフィー可能 低毒性

腫瘍イメージングに利用 低磁場 MRI に最適 マウス血管造影 に最適です!

投与後、数分~2時間まで長時間造影能が持続!



●Gadolisomeは大阪府立大学および旧放射線 医学総合研究所のライセンスを基に開発した 小動物MRI用血管造影剤です。


注文 Cat.No.	メーカー Cat.No.	品名	備考	容量	価格(円:税別)
VL16000500	16000500	Cadalisama	推奨投与量	O Emal	00.000
KH16000590	16000590	Gadolisome	100~200uL /mouse	0.5mL	98,000

■ 実験小動物用 MRI で血管造影剤を使用したマウス撮像例

のPCで確認が可能です。

造影剤血管貯留時間

投与前を基準とし血管造影能を検討

品名	MR VivoLVA®1508				
カタログ番号	NXRD1508N				
永久磁石磁気回路					
磁場強度	1.5T (テスラ)				
撮像範囲	約 40mm 球内部				
磁極間隔	80mm				
サイズ(W:D:H 脚部含)	800mm × 710mm × 1080mm				
重量 (脚部含)	1500kg				
永久磁石	高性能希土類(Nd-Fe-B)永久磁石				
磁気回路形状	垂直磁場方式、ワイドオープン型				
漏洩磁場(0.5mT ライン)	水平方向、磁場中心から半径 1m 以内				
温度制御	白金センサー、ヒーター、過昇防止機能内蔵				
電流シム	3ch +二次シム(二次シム用電源はオプション)				
勾配磁場コイル	高リニアリティー型、空冷対応				
MRI コンソール部					
Operating System	Windows 10(日本語版)				
MRI 計測・画像再構成	Medalist				
データ出力	Raw、ビットマップ、DICOM、オリジナルフォーマット				
2D ビューアー	ImageJ(日本語版)				
3D ビューアー	Expet INTAGE(オプション)				
撮像法(標準)	3 面スカウト画像、スピンエコー法(2D/3D)、勾配エコー法(2D/3D)、拡散強調法(2D/3D)、				
スケジュール撮像機能	高速スピンエコー法 (2D/3D)、反転回復法、その他の撮像法はオプションにて作成(お問い合わせください) 任意の撮像シーケンスの組み合わせによる連続計測				
フリップアングル	任息の撮影と「ゲンスの配の自分とによる連続目別				
シム調整	オート/マニュアル				
ゲイン調整	オート/マニュアル				
撮像視野	200mm~10mm 任意				
最小空間分解能	78µm				
外部トリガーライン	絶縁入力ライン(1ch)を標準装備(生体モニター[心電・呼吸・体温]はオプション)				
リモート操作	LAN、インターネット回線によるリモート撮像				
LCD モニター	カラー液晶 23 インチ以上(1280 以上× 1024 以上対応)				
キーボード	日本語対応キーボード				
マウス	光学式				
サイズ(W:D:H 脚部含)	600mm× 750mm× 134mm				
重量 約 250kg					
入力電源	単相 100V 15A (個別コンセント 2 つ以上推奨)				
	十四 1000 15/ (四川コンピント 2 7久工元夫)				

^{*}本製品は強力な磁場を発生いたします。設置に際しては別途ご相談ください。

【開発・発売元】

日本レドックス株式会社

〒 812-0044 福岡県福岡市博多区千代 4-29-49-805

(お問い合わせ総合窓口)

TEL **092-292-9169**FAX 092-292-9169
URL http://jrx.co.jp/
Email product@jrx.co.jp

本カタログに掲載されています製品はすべて研究用です。 ヒトや動物の医療用・臨床診断用には使用しないでください。

[代理店]

ゼロシーセブン株式会社

本社:東京都港区赤坂1-12-32 アーク森ビル12F TEL: 03-4360-8261 / FAX: 03-4360-8262 西日本営業所:神戸市中央区旭通2-7-8 インテリアビル6F

TEL: 078-265-6880 / FAX: 078-265-6881
URL: https://0c7.co.jp / EMail: info@0c7.co.jp

^{*}仕様、材質および外観等は改良のため予告なく変更することがありますのでご了承ください。