

EMG100C - ELECTROMYOGRAM AMPLIFIER MODULE

The electromyogram amplifier module (EMG100C) is a single-channel, high-gain, differential input, biopotential amplifier designed specifically for monitoring muscle and nerve response activity.

The EMG100C is designed for use in the following applications:

Conventional bipolar EMG measuremen

Biomechanics

Nerve conduction measurement

Muscular reflex studies Motor unit potential measurement

The EMG100C will connect directly to any of BIOPAC's Ag-AgCl lead electrodes. The best choice for electrodes depends on the application, but typically, the EL503 adhesive/disposable snap electrodes are used in conjunction with the LEAD110S pinch lead. If reusable electrodes are required, the EL508S is typically used; when using EL508S electrodes, adhesive disks (ADD208) and electrode gel (GEL100) are also required. Use two shielded electrodes (LEAD110S/EL503 or EL508S) for the signal inputs and one unshielded electrode (LEAD110/EL503 or EL508) for ground.

The EMG100C has built-in drive capability for use with shielded electrode leads. Shielded leads are typically required, as the EMG100C has a frequency response that extends through the 50/60 Hz interference bands. The EMG100C is designed to pass EMG signals and signals associated with nerve responses.

The EMG100C incorporates a variety of filtering options to optimize the amplifier performance when recording from either surface or needle electrodes, and when recording from either muscle or nerves. For instance, when recording EMG (muscle) from surface electrodes, the 10 Hz to 500 Hz bandwidth setting could be used, but when recording nerve propagation times, the 100 Hz to 5,000 Hz bandwidth setting could be used.

Electrode connections to the EMG100C to measure EMG activity from the arm biceps.

This graph shows raw EMG and integrated EMG.

To integrate EMG in real-time, set up a calculation channel in Acq*Knowledge* using the Integrate function with Rectify checked ON. In this case, this waveform would be augmented by a smoothed curve following the positive envelope of the EMG signal.

This graph shows a typical raw EMG recording. Waveform peaks indicate points of peak muscle activity.

FREQUENCY RESPONSE CHARACTERISTICS

The 1 Hz high pass and 10 Hz high pass lower frequency response settings are single pole roll-off filters.

Modules can be set for 50 Hz or 60 Hz notch options to match the wall-power line frequency of the destination country. The proper setting reduces noise from interfering signals when the notch filter is engaged. Generally, wall-power line frequency is 60 Hz in the United States and 50 Hz in most of Europe and China; if necessary, contact BIOPAC to determine the appropriate line frequency. To reset the line frequency setting, adjust the bank of switches on the left panel of the amplifier module.

The 50/60 Hz notch is only engaged when the 100 Hz HPN filter switch on the EMG100C amplifier is set to ON.

Line Frequency switch bank is on the left panel of biopotential and transducer amplifiers

	6 AULTINITIAN A
-	

See also: Sample frequency response plots

100 Hz HPN option (with 50 Hz notch enabled)

100 Hz HPN option (with 60 Hz notch enabled)

50 Hz

Both switches DOWN

Both switches

60 Hz

UP

500 Hz LP option 5000 Hz LP

EMG100C CALIBRATION

The EMG100C is factory set and does not require calibration. To confirm the accuracy of the device, use the CBLCAL.

EMG100C SPECIFICATIONS

Gain:	500, 1000, 2000, 5000
Output Range:	±10 V (analog)
Frequency Response	Maximum bandwidth (1.0 Hz – 5,000 Hz)
Low Pass Filter:	500 Hz, 5000 Hz
High Pass Filter:	1.0 Hz, 10 Hz, 100 Hz
Notch Filter:	50 dB rejection @ 50 Hz or 60 Hz
Noise Voltage:	0.2µV rms – (10-500 Hz)
Signal Source:	Electrodes (three electrode leads required)
Z (input)	
Differential:	2 ΜΩ
Common mode:	1000 ΜΩ
CMRR:	110 dB min (50/60 Hz); see also: <u>Shield Drive Operation</u>
CMIV–referenced to	
Amplifier ground:	±10 V
Mains ground:	± 1500 VDC
Input Voltage Range	<u>Gain</u> <u>Vin (mV)</u>
	500 ±20 1000 ±10
	2000 ±5 5000 ±2
Maximum Over-Voltage for Different	ential Input: ±25 V
Weight:	350 grams
Dimensions:	4 cm (wide) x 11 cm (deep) x 19 cm (high)
Input Connectors:	Five 1.5 mm male Touchproof sockets (Vin+, Ground, Vin-, 2 of shield)

See also: JUMP100C, MEC series

AMPLIFIER MODULES

100C series modules

The 100C series biopotential/transducer amplifier modules are single channel, differential input, linear amplifiers with adjustable offset and gain. These modules are used to amplify smaller voltage signals coming from raw electrodes and transducers (typically less than ± 0.01 volt). In addition to amplifying signals, most of the 100C series modules include selectable signal conditioning ability so that data may be filtered or transformed as it is being collected.

- **Biopotential modules**: ECG100C, EEG100C, EGG100C, EMG100C, EOG100C, ERS100C
- Transducer modules: EDA100C; PPG100C; RSP100C; SKT100C
- MRI Smart modules—advanced signal processing circuitry removes spurious MRI artifact from the source physiological data: ECG100C-MRI; EDA100C-MRI; EEG100C-MRI; EMG100C-MRI; PPG100C-MRI.

Modules can be cascaded by snapping the modules together. Up to sixteen 100C series modules can be connected to the MP System at any one time.

IMPORTANT

When cascading modules, it is important to remember that **no two amplifiers may be set to the same channel**. If two connected amplifier modules are left on the same channel, then contention will result and both amplifier outputs will give erroneous readings.

Amplifier offset Set by the zero adjust control trim potentiometer near the top of the module.

The offset control can be used to adjust the zero point or "baseline" of a signal.

- **Gain Switch** The four-position slide Gain switch controls sensitivity. Lower gain settings will amplify the signal to a lesser extent than higher gain settings. If the signal plotted on the screen appears to be very small for a given channel, increase the Gain for that particular channel. Conversely, if the signal seems to be "cropped" at +10 Volts or -10 Volts, decrease the Gain.
- **Connections** Transducers and electrodes connect to the amplifiers using 1.5 mm female Touchproof connectors.

Electrodes	The biopotential amplifier modules use a three-electrode arrangement (VIN+, GND, VIN–). Although certain applications may require different arrangements of electrodes and/or transducers, some generalizations about electrode and transducer connections can be made. Electrodes measure the electrical activity at the surface of the skin, and since electricity flows from – to +, measuring the flow of a signal requires that there be (at least) one "-" electrode and (at least) one "+" electrode. An additional electrode, a "ground" (or earth) electrode is used to control for the general level of electrical activity in the body.
Leads	Typically, electrode leads are used to connect individual electrodes to the <i>xxx</i> 100C amplifier. Most electrode leads are shielded, which means they introduce less noise than an unshielded lead. A shielded electrode lead has an extra jack on one end that plugs into the SHIELD input on the amplifier modules. A standard electrode lead configuration consists of two LEAD110S electrode leads (one connected to the VIN + input and one to the VIN – input on the amplifier) and a single LEAD110 (connected to the GND input on a biopotential amplifier).
Transducers	Transducers, on the other hand, are not designed to measure electrical activity directly and usually involve simpler connections. The transducers discussed in this manual translate physical changes (in temperature, for instance) into electrical signals. Connections for individual transducers are discussed in each section.
Channel	The active channel is selected using the channel select switch on the top of the module. The channel select switch can direct the amplifier output to one of sixteen possible MP System input channels. <i>Remember to make sure that each amplifier module is set to a unique channel</i> .
Zero Adjust	On input signals, a limited range in baseline level (DC offset) can be "zeroed out" using the zero adjust potentiometer. Typically, the zero adjust will not have to be used (as it is preset at the factory). However, some of the 100C series modules can measure DC signals and, in certain circumstances, signal "zeroing" may be required.
Setup	All 100C Series biopotential or transducer amplifiers incorporate specific gain, coupling and filtering options that are appropriate for the biopotential type or transducer signal that requires measurement. Generally, when an electrode or transducer is inserted into the corresponding 100C series module, the amplifier will immediately produce a useful output, with no user adjustments necessary.
	Certain functionality is added to each module to optimize its performance with its intended signal measurement. For example, all 100C series biopotential amplifiers incorporate a selectable interference filter. When the interference filter is on, 50/60 Hz interfering signals are suppressed.
Filters	All 100C series amplifiers are constructed with filters that have a high degree of phase linearity. This means the 100C series modules will filter signals with as little distortion as possible. These modules also incorporate protection circuitry to limit input current in the event of input signal overload. Notch and bandstop filters have the potential to cause distortion, especially in the form of "ringing" in the data stream; biopotential hardware notch filters are implemented in conjunction with LP or HP functions to minimize distortion.
Line Freq	Line Frequency is set using the recessed switch boxes on the left panel of the amplifier module $(50 \text{ Hz} = \text{all switches down}, 60 \text{ Hz} = \text{all switches up})$. It is important to select the correct line frequency for your geographical region. Typically, U.S. line frequency is 60 Hz; Europe and China 50 Hz. Contact BIOPAC for additional line frequency information. All MP biopotential amplifier modules which contain a 50/60 Hz notch filter only engage the filter when the pass filter is also ON:
	• ECG100C, EEG100C, EOG100C amplifiers: the 50/60 Hz notch is only engaged when the 35 Hz LPN low pass notch filter switch is set to ON.
	• EMG100C, ERS100C amplifiers: the 50/60 HZ notch is only engaged when the 100 Hz HPN high pass notch filter switch is set to ON.

See individual module sections for details.